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ABSTRACT 
Workflows are becoming an increasingly more common 
paradigm to manage scientific analyses.  As workflow 
repositories start to emerge, workflow retrieval and 
discovery becomes a challenge.  Studies have shown that 
scientists wish to discover workflows given properties of 
workflow data inputs, intermediate data products, and data 
results.  However, workflows typically lack this 
information when contributed to a repository.  Our work 
addresses this issue by augmenting workflow descriptions 
with constraints derived from properties about the 
workflow components used to process data as well as the 
data itself.  An important feature of our approach is that it 
assumes that component and data properties are obtained 
from catalogs that are external to the workflow system, 
consistent with current architectures for computational 
science.  

Categories and Subject Descriptors 
I.2.11 Distributed Artificial Intelligence; I.2.8 Problem 
Solving, Control Methods, and Search; H.4 Information 
Systems Applications; I.2.4 Knowledge Representation 
Formalisms and Methods. 

General Terms 
Algorithms, Languages.  

Keywords 
scientific workflows, workflow matching, workflow 
discovery, workflow retrieval, workflow catalogs, semantic 
workflows, semantic matchmaking. 

INTRODUCTION 
Workflows represent complex applications assembled from 
distributed steps implemented as remote services or remote 
job submissions [3,19].  Workflows are becoming an 
increasingly more common paradigm to manage scientific 

analyses. Workflows represent data analysis routines as 
workflow components.  Workflows also contain links that 
express the dataflow among these components and reflect 
the interdependencies that must be managed during their 
execution.  
As scientific workflows become more commonplace, 
workflow repositories are emerging with contributions from 
a variety of scientists.  Provenance systems record the 
details of the execution of workflows so they can be 
retrieved later [17,13].  Since workflow executions contain 
a lot of details that make it harder to reuse them, scientists 
also share workflow templates that describe a general kind 
of analysis that can be more easily reused [19]. Workflow 
repositories can also contain best practices for common 
types of scientific analyses [18]. 
Workflow matching and discovery from these repositories 
becomes a challenge.  A scientist may need a workflow 
appropriate to analyze some dataset he or she has, or need a 
workflow that does a certain kind of analysis, or a 
workflow fragment that produces a certain type of result.  A 
series of studies regarding the requirements for scientific 
workflow matching and discovery [5-8] found the need to 
support: 

I. Queries based on the types of data used by a workflow, 
II. Queries based on the types of intermediate or final data 

that the workflow produces,  
III. Queries specifying ordered data points that must appear 

in the dataflow, 
IV. Queries that specify what components (algorithms) 

must appear in the workflow and their relative order, 
V. Queries that specify properties of the workflow such as 

authors, creation time, derived variants, or popularity, 
VI. Queries that contain any combination of the above. 

Recent work on workflow discovery has only investigated 
retrieval based on component orderings [6], retrieval based 
on (social) tags and textual descriptions [7], and retrieval of 
workflow execution traces to be reused during workflow 
creation [14]. Matching based on types of data has been 
done for the discovery of individual services or software 
components [10,15], but not for the more complex 
structures that workflows represent. Queries I to III above 
have not been investigated to date and are the most 
challenging, as they represent data-centered properties of 
the workflow that are often not specified in the workflow. 
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T1: Sample the training data to build an LMT model, randomize and 

normalize the test data and use an LMT classifier. 

 

T2: Normalize training and test data, then use ID3 to model and classify 
the data.  

 

T3: Use NaiveBayes with sampled discrete weather 155627 for training. 

 
T4: Normalize and sample training data, then use a voting scheme to 
combine a NaiveBayes model, an HNB model, and an ID3 model. 

Figure 1.  Example workflow templates in a workflow catalog, showing the diagram and constraints specified by users.

The main contribution of this work is to support workflow 
retrieval given data-centered queries and their combination 
with other constraints on components and workflow 
structure.  One important challenge is that workflow 
catalogs typically specify only a limited amount of 
information that is insufficient for data-centered queries. 
That is, although semantic annotations of workflows have 
been explored in prior work, the presence of any semantic 
information in the workflow is assumed to be manually 
provided. However, when users create a workflow they 
rarely add such information.  We believe that many 
semantic annotations can be extracted from component 
catalogs that describe individual components reused in 
different workflows.  Our approach is to use such 
component descriptions to automatically enrich the 
workflows created by users into semantic workflows that 
contain inferred properties that are needed for supporting 
data-centered queries. An important consideration in our 
work is that scientific applications are developed using data 
and component catalogs that are independent of workflow 
catalogs (e.g., www.nvo.org, www.earthsystemgrid.org, 
cabig.cancer.gov).  Therefore, a contribution of our work is 
that our workflow matching algorithms identify reasoning 
tasks that are specific to datasets and components, and 

submit requests to external data and component catalog 
services to carry them out.   
The paper begins with examples of the kinds of queries that 
our approach can address.  After describing our workflow 
enrichment and matching algorithms, we present our 
implemented system and performance results on a modest 
but realistic library of workflows.   

MOTIVATING EXAMPLES  
We use a small set of queries to illustrate the capabilities of 
our approach and implemented system.  Here, we use 
machine learning workflows with components from the 
well-known Weka repository [21] and Irvine datasets [1]. 
These workflows typically consist of a few data preparation 
steps, then build a model with training data that is used to 
classify test data. 
Figure 1 shows in detail four workflow templates that could 
be in a workflow catalog.  For each template, we show the 
dataflow diagram as the creator would specify it by 
selecting components (which correspond to data analysis 
routines used, shown in yellow) and connecting them. The 
dataflow graph shows stubs for data, which are called 
workflow data variables, in dark blue. Parameters of 
components are shown in light blue. 



 
Figure 2.  Workflow constraints for T4 after the workflow 
is augmented with propagated constraints. 
When users create workflow templates, they specify 
workflow components and dataflow links.  Users will rarely 
specify any additional constraints of any of the datasets in 
the workflow.  For example, we expect that a user creating 
T1 will not specify that the model generated by a logistic 
model tree (LMT) modeler is of type LMTmodel.  In the 
user’s mind, this would fall from the definition of an LMT 
modeler, and does not need to be specified in each 
workflow.  Therefore, workflows contributed to the catalog 
will mostly consist of the dataflow graph and have little or 
no semantics about the datasets involved.  In our approach, 
the original dataflow provided by the workflow creator is 
augmented with additional inferred constraints based on 
information coming from the component catalog about how 
each workflow component behaves.  That is, a component 
catalog would know that a discretizer component does not 
change the sparseness of a dataset, but will make a 
continuous dataset into a discrete one.  Figure 2 shows 
examples of such constraints derived by our system as 
tables of triples of <object property value>, which we call 
data object descriptions (DODs). 
Table 1 shows retrieval results for five diverse example 
queries.  The first column gives a textual description of the 
query. The second column shows which workflows can be 
matched if the original workflows are augmented only with 
type information obtained from a basic component catalog 
that only represents data type constraints for components.  
The last column shows the workflows that are retrieved by 
our system after augmenting the original created workflow 
with additional inferred properties from a component 
catalog with richer semantic information about components. 
 

Query Matched 
workflows 
augmented 
with types  

Matched 
workflows with 
propagated 
constraints  

Q1: Find workflows where input 
data is cpu data, which is 
continuous and has missing values 

T1 
T2 
T3 
T4 

- 
- 
- 
- 

Q2: Find workflows that generate a 
classification of Iris data  

T1 
T2 
T3 
T4 

T1 
T2 
- 

T4 
Q3: Find workflows that can have 
cpu-2008-07-09 as input to a 
classifier (the dataset is continuous 
and has missing values) 

T1 
T2 
T3 
T4 

- 
- 
- 
- 

Q4: Find workflows that use 
sampled training data to produce a 
Bayes model, then use model to 
generate a classification of Iris test 
data, which is discrete and has 
missing values 

- 
- 

T3 
T4 

- 
- 
- 

T4 

Q5: Find workflows that normalize 
labor data to create a decision tree 
model (labor data is continuous and 
has missing values) 

T1 
T2 
- 

T4 

- 
- 
- 
- 

Table 1.  Example queries showing workflows retrieved. 

T1 illustrates the difference.  It uses the LMT algorithm, a 
decision tree approach that requires that the data does not 
have missing values (i.e., it is not sparse).  When T1 is 
augmented with the types that are input and output for each 
component, it would include a constraint that the model 
created by the LMT modeler is a decision tree model (DT 
model).  Therefore, it would not be retrieved for query Q4, 
which asks for a Bayes model, but it would be retrieved for 
Q1, Q2, Q3, and Q5.  But the LMT algorithm also requires 
that the data has no missing values. Therefore, the input to 
the sampler cannot have missing values in turn.  When the 
system propagates this requirement through the sampler 
component, it can detect that T1 is not appropriate for Q1, 
Q4, or Q5 because the input datasets would be sparse.  In 
essence, T1 is only really appropriate to retrieve for Q2.  If 
no constraints are propagated, the system would also 
retrieve T1 for Q1, Q3, and Q5 resulting in lower precision.   
An analogous situation occurs with workflow template T2.  
It uses the ID3 algorithm, which can only take discrete 
values, and normalizes the datasets before modeling and 
classifying.  When T2 is augmented with the input and 
output types for each component, it includes a constraint 
that the model created by the ID3 modeler is a decision tree.  
Therefore, it would not be retrieved for query Q4, which 
asks for a Bayes model, but it would be retrieved for Q1, 
Q2, Q3, and Q5.  When the system propagates the 
constraint that input datasets cannot have continuous 
values, it can detect that T2 is not appropriate for Q1, Q3, 
or Q5 because the query datasets are continuous. 
Augmented workflows lead to higher precision with no loss 
in recall.  Higher precision is very important for workflow 
discovery, since the size of repositories can become very 
large. For example, the Taverna bioinformatics workflow 
system includes more than 3,000 services as of 2006 [11]. 
 



 

 

Construct Type Use 

<?c1 precedes ?c2> SP component ?c1 appears upstream 
in the dataflow from ?c2 

<?d1 datapointPrecedes 
?d2> 

SP data variable ?d1 appears upstream 
in the dataflow from data variable 
?d2 

<?d1 
datapointImmediatelyPr
ecedes ?d2> 

SP data variable?d1 is input to a 
component that outputs data 
variable ?d2  

<?c hasInputData ?d> SP dataset identifier ?d is an input to 
the component ?c 

<?c Subclass-of ?t> CP component ?c is a subclass of 
component type ?t 

<?d hasDataBinding ?i> DP data variable ?d in the workflow is 
bound to dataset identifier ?i 

<?d canBeBound ?i> DP data variable ?d in the workflow 
could potentially be bound to 
dataset identifier ?i 

<?d hasType ?t> DP Data variable ?d must be of type ?t 

<?d ?p ?v> DP dataset ?d has property ?p with 
value ?v  

<?w hasInputDataset 
?d> 

WP 
(DP) 

?d represents an input data variable 
to the workflow ?w 

<?w hasOutputDataset 
?d> 

WP 
(DP) 

?d represents an output data 
variable of the workflow ?w 

<?w 
hasIntermediateDataset 
?d> 

WP 
(DP) 

?d is a dataset of workflow ?w that 
is not an input or output data 
variable 

<?w hasDataset ?d> WP 
(DP) 

?d represents a data variable in 
workflow ?w that can be an input, 
output, or intermediate data 
variable 

<?w hasComponent ?c> WP 
(CP) 

?c represents a component in 
workflow ?w 

<?w hasInputParameter 
?p> 

WP 
(CP) 

?p is a parameter in workflow ?w 

Table 2.  Overview of query language constructs. 

EXPRESSING QUERIES FOR WORKFLOW 
DISCOVERY 
Queries for workflow discovery may be issued in a variety 
of contexts [5,6]: 
• A user with a dataset is looking for ways to analyze it  
• A user is creating a workflow and is looking for 

workflow fragments that have been created by others 
for specific functions  

• A user has created a workflow and wants to find 
similar ones 

• A user is browsing a workflow catalog and wants to 
search for workflows with general kinds of features 

• A system can retrieve workflows to be brought up to 
the attention of a user, for example during workflow 
creation or when trying to execute workflows 

• A system can retrieve a workflows and use it to 
generate a desired type of result requested by the user 

As we mentioned in the introduction, a series of studies 
have documented what kinds of queries users wish to 
express for retrieving workflows [5-8], discussed as 
categories I-VI above.  Users often describe the desired 
workflow in terms of the output produced and input used, 
or may indicate some properties of intermediate data. We 
refer to all these as data-centered properties (DP).  Q1 is an 
example where input data properties are specified, Q2 is an 
example for output and Q4 for intermediate data.   
Another finding of those studies is that users also want to 
be able to specify the kinds of algorithms (components) or 
component types that are used in the workflow. We call 
these component-centered properties (CP).  Q3 and Q5 are 
examples of queries with such properties, though note that 
they also include data-centered properties.  
Other queries would specify constraints on the structure of 
the workflow, concerning the relative ordering of the data 
processing steps. Users wanted to specify a partial or total 
order for the steps.  In addition, users wanted to specify the 
types of data generated and in what order.  We refer to both 
of these as structural properties (SP).  Examples are Q4 
and Q5, where three types of data to be generated are 
mentioned and their relative order is specified. 
Our work focuses on supporting user queries that specify 
data-centered properties (DP) and their combination with 
component-centered (CP) and structural properties (SP).  
These comprise all but category V discussed earlier. 
Table 2 shows the constructs in our query language to 
represent user requirements for DP, CP, and SP.  The 
language includes constructs to refer to workflow properties 
(WP), which indicate the role of datasets and components in 
the workflow.  These are the last six constructs shown in 
the table.  The table specifies each construct’s type and its 
use.  Each construct is expressed as a triple <object 
property value>.  Disjunction and negation are not allowed. 
The semantics of most constructs are straightforward, but 
there is an important aspect to discuss. We make a 
particular choice of those proposed by [15] over others that 
have been proposed for semantic service discovery.  In that 
approach, a matcher should support retrieval with the 
opposite subclass relations as well intersection of the 
classes.  However, based on our experience we make the 
following choices.  First, for <?c Subclass-of ?t> we 
assume that the semantics the user intends is that only 
workflows which contain a component of class ?t or a more 
specific class should be retrieved.  For example, for <?c 
Subclass-of DecisionTreeclassifier> it is ok to retrieve 
workflows with ID3classifier and with LMTclassifier, but 
not workflows that have more general classes such as 
TreeClassifier. The rationale for this is that if a user found a 
more general component class acceptable they would not 
have indicated such a specific class. Second, when the user 
specifies data properties we assume that the semantics 
intended is that any workflows appropriate for more general 
classes should be retrieved.  For example, for <?d hasType 
BayesModel>  and <?d hasDomain weather> it is ok to 
retrieve workflows that generate datasets of type Model and  



 
 

 
 

 

Figure 3.  Snapshots of the user interface to specify queries 
Q1, Q2, Q4, and Q5, showing the formal query expression 
formulated by the system in the pop-up window. 

 

do not specify the domain.  The rationale here is that the 
user is looking for a workflow that can be used to analyze 
or to generate data of a specific type, and any workflows 
that process or generate data of a more general type are 
appropriate.  Therefore, note that the semantics are very 
different for component classes and for dataset classes. 
Figure 3 shows snapshots of the user interface when 
specifying the example queries, with a pop-up window 
showing the formal representation of the query. Users 
would have used a similar interface to create and view 
workflow templates (such as those shown in Figures 1 and 
2).  So, like a workflow, a query consists of a dataflow 
diagram and a table of constraints (triples).  Much as they 
do in the workflow editor, users can create a query by 
selecting elements and drawing links among them, and by 
defining constraints on the query data variables.  When 
defining constraints, the system offers a pull down menu of 
possible properties of data variables.  When a property is 
selected, the system shows possible types and values. 
The query editor has a few additional elements in the 
dataflow diagram pane that do not exist in the workflow 
template editor.  To express that a dataset is a workflow 
input or output dataset (as in Q1 and Q2), the user can draw 
a node and label it as “workflow”.  To express one or more 
components to process a dataset (as in Q4 and Q5), the user 
can draw a node and label it as “component-n.”  This type 
of node is also used to express a query as a series of data 
points (as in Q4).   
Note that our system formulates the formal query (shown in 
the popup windows of Figure 3) based on what the user 
specifies in the query interface.  

APPROACH TO WORKFLOW MATCHING 
Our approach has three novel contributions, described in 
this section: 

1. An algorithm for enriching workflow catalogs that 
incorporates in each template relevant properties of 
data and components and then propagates these 
properties throughout the workflow 

2. An algorithm for workflow matching based on data-
centered properties and their combination 
component-centered and structural properties 

3. A separation of reasoning steps that can be called out 
to external component and data catalogs, concerning 
individual components and datasets  

Data and Component Catalog Requirements 
In order to support the reasoning mechanisms for workflow 
retrieval, we require that the data catalog and the 
component catalog support the following functions: 

• subsume: DOD(d1) × DOD(d2) → Boolean 
Determine whether data object d1 is compatible with data 
object d2 by checking if a set of metadata annotations on 
d1 subsume those on d2. 

• combineDODs: DOD(d) × DOD(d) → DOD(d) 
Combine two sets of metadata annotations on the same 
data object d.   



 

 

• findDataRequirements: DOD(c) → DOD(c) 
Return a possibly larger set of constraints on the 
arguments of component c given an initial set of 
constraints on those arguments. 

• subsume: c1 × c2 → Boolean 
Whether a component class subsumes another. 

Note that the findDataRequirements function in the 
component catalog can be supported in two alternative 
ways.  One is simpler and only returns input and output 
types.  In that case, our matcher only matches based on 
types.  The second way is to return any constraints inferred 
in addition to types.  Those constraints can be propagated 
through the workflow and used for matching. As we 
illustrated with our query examples, matching based on 
propagated constraints achieves higher precision than 
matching simply based on types. 

Enriching Workflow Catalogs: Propagating 
Semantic Properties of Workflow Templates  
We enrich workflows by propagating through the workflow 
structure constraints about the components and about 
particular datasets as obtained from the data and component 
catalog. The propagation of constraints is done in two 
phases: first, from workflow outputs to workflow inputs 
(backward sweep); and then, from workflow inputs to 
outputs (forward sweep). These two phases are applied 
iteratively until no changes occur.  Table 3 shows the 
pseudo-code for the backward sweep. The forward sweep 
uses a similar algorithm.  

Workflow Retrieval  
Given a query, for every workflow template in the library 
we generate possible  mappings  between  variables  in the 
query and variables in the template. If a mapping is found 
the template is added to an initial set of candidate matches 
together with the possible variable mappings.  From that 
set, we filter out those that violate any of the query 
constraints.  This section describes this algorithm in detail. 
A query q can be represented as a tuple <DVq, CVq, DPq, 
CPq, SPq, WPq> containing a set DVq of data variables, a 
set CVq of component variables, a set DPq of data-centered 
properties, a set CPq of component-centered properties, a 
set SPq of structural properties, and a set WPq of workflow 
properties. A workflow template wt can be represented as a 
tuple <DVwt, Cwt, DOD(DVwt), L> containing a set DVwt 
of data variables, a set Cwt of components, a set 
DOD(DVwt) of data object descriptions on the data 
variables of the workflow, and a set L of links that express 
the dataflow among components and which data variables 
correspond to that dataflow link.   

We define a mapping map between a query q and a 
template wt as a function that associates each data variable 
in q to a data variable in wt and each component variable in 
q to a component in wt:  

∀ dv ∈ DVq ∃ map(dv) ∈ DVwt 
∀ cv ∈ CVq ∃ map(cv) ∈ Cwt 

 

BackwardSweep( wt ) 
1. backward-processed-DVs ← output-DVs( wt ) 
2. remaining-components ← Cwt 
3. while not empty(remaining-components)  
4.   c ← selectBackwardProcessable(remaining-components) 
5.  DOD(c) ← { } 
6.  remaining-components ← remaining-components - {c} 
7.  forEvery arg ∈ output(c) 
8.   let dv ≡ destination( c, arg ) 
9.   DOD(c) ← 
    combineDODs(DOD(c), DOD(dv)(dv | arg)) 
10.  DOD(c) ← findDataRequirements(DOD(c)) 
11.  forEvery arg ∈ input(c) 
12.   let dv ≡ origin( c, arg ) 
13.   DOD(dv) ← 
    combineDODs(DOD(dv), DODarg(c)(arg | dv)) 
14.    if destination(dv) ∩ remaining-components = ∅ then 
15.    backward-processed-DVs ← 
     backward-processed-DVs ∪ {dv} 
  where:  
– wt is a workflow template 
– output-DVs( wt ) returns the set of output data variables in wt 
– Cwt represents the set of components in wt 
– selectBackwardProcessable returns a component in the 

workflow all whose output arguments are linked to data 
variables in backward-processed-DVs 

– input(c) (output(c)) represents input (output) arguments of c 
– destination( c, arg ) represents the data variable where the 

result of output argument arg of component c is stored 
– origin( c, arg ) represents the data variable that stores the input 

for the argument arg of component c 
– DODarg(c) represents the subset of constraints on arguments of 

component c that only refers to argument arg 
– (id1 | id2) represents the replacement of identifier id1 with 

identifier id2 in a set of constraints 
Table 3.  Algorithm to augment workflow templates by 
propagating constraints from data products to data inputs. 

Given a query q and a workflow template wt we first 
generate all possible mappings from variables in the query 
to data variables and components in the workflow that 
fulfill the set WPq.  The candidate mappings are filtered in 
three consecutive steps using the rest of the query: 

1. Filter out candidate mappings that violate CPq.   
2. Filter out candidate mappings that violate SPq.  
3. Filter out candidate mappings that violate data 

properties DPq.  That is, for every data variable in the 
query, dv ∈ DVq, the data catalog subsume( 
DOD(m(dv)), DPq(dv) ) must return true where 
DOD(m(dv)) represents the subset of constraints in 
DOD(DVwt) that only refers to m(dv), and DPq(dv) 
represents the subset of constraints in DPq that only 
refers to dv. 

There is a tradeoff between precision and performance that 
is worth mentioning here.  The constraint propagation 
algorithm can be run on each workflow template as it is 
being added to the library and prior to resolving any 
queries.  Alternatively, it can be run at query matching time 
and incorporating all the constraints specified in the query 
into each workflow being matched. To achieve this, we 



would simply propagate the constraints in the query through 
the workflow structure using the same backward and 
forward sweep algorithms. The first option makes the 
performance of the matcher much faster that running the 
constraint propagation algorithms, but the precision is 
higher with the second option as all the constraints that 
appear in the query are taken into account.   

PERFORMANCE RESULTS 
Our query interface and matcher are implemented as part of 
the WINGS workflow system [4,13].  We represent 
workflows and their constraints in OWL, and use Jena as 
the underlying reasoner.  The data and component catalogs 
are implemented as separate services that support the 
functions described in the prior section.   
We tested two different matchers.  One matcher (m-types) 
uses only data types, that is the component catalog returns 
only input and output type information.  The other matcher 
(m-constr) propagates not only data types but also all other 
constraints on datasets. 
We looked at queries in five categories.  Category QC1 
corresponds to queries that have constraints on input data. 
QC2 are queries with constraints on output data.  QC3 are 
queries with constraints on components.  QC4 are queries 
that have constraints on intermediate data.  QC5 are queries 
that include constraints both on components and on data.  
Each of the queries Q1-Q5 in Table 1 belongs to one of the 
QC1-QC5 categories.  We created four additional queries 
for each category.  
We used three different workflow catalogs.  CAT1 
contained 20 workflows, CAT2 contained 100 workflows 
that could be in principle relevant, and CAT3 included 100 
workflows that would not be relevant.  We created relevant 
workflows with several variations of steps and data 
constraints.  We created irrelevant workflows by adding a 
constraint that made the domain different from the domain 
used in all the queries.  
Table 4 shows the performance for the two matchers and 
the three workflow libraries across different categories of 
queries.  We show the query response time in seconds, 
using an Intel Core 2 Duo 2.6GHz with 2GB.  We also 
show the number of workflows matched and the precision.  
The m-constr matcher that uses propagated constraints 
shows in these experiments: 
• Higher precision: m-constr always returns less matches 

than m-types, even when the query does not have DP 
constraints.   

• Same recall: Both matchers return all the correct answers.  
• Comparable performance: m-constr is rarely slightly 

slower and often slightly faster, than m-types, since it 
ends up ruling out candidate matches earlier in the 
matching process. QC4 queries take longer since there 
are many possible mappings of data variables that need to 
be considered. 

• Comparable scalability: Performance against larger 
catalogs is not necessarily slower, as it depends on how 
early the matching process terminates for each template. 

 

CAT1: 20 workflows 
in library 

CAT2: 100 
workflows in 
library that could be 
relevant 

CAT3: 100 
workflows in library 
that would not be 
relevant  

Q. 
category 
(features 
used) 

m-
types: 
Avg 
Retr. 
Time 
(Avg # 
retrv’d, 
prec’n) 

m-
constr: 
Avg 
Retr. 
Time  
(Avg # 
retrv’d, 
prec’n) 

m-
types: 
Avg 
Retr. 
Time  
(Avg # 
retrv’d
, 
prec’n) 

m-
constr: 
Avg 
Retr. 
Time 
 (Avg # 
retrv’d, 
prec’n) 

m-
types: 
Avg 
Retr. 
Time 
(Avg # 
retrv’d) 

m-
constr: 
Avg 
Retr. 
Time 
(Avg # 
retrv’d) 

QC1 
(DP, 
WP) 

0.16 
(15.8, 
0.67) 

0.16 
(10.6, 

 1) 

0.40 
(39.0, 
0.68) 

0.41 
(26.6,  

1) 

0.41 
(0) 

0.40 
(0) 

QC2 
(DP, 
WP) 

0.10 
(15.0, 
0.93) 

0.10 
(14.0, 

 1) 

0.25 
(35.8, 
0.96) 

0.25 
(34.4,  

1) 

2.60 
(0) 

0.25 
(0) 

QC3 
(CP, 
WP) 

0.07 
(9.0, 

0.84) 

0.06 
(7.6, 

1) 

0.16 
(22.0, 
0.85) 

0.17 
(18.6, 

1) 

0.15 
(0) 

0.01 
(0) 

QC4 
(DP) 

0.30 
(11.0, 
0.38) 

0.29 
(4.2,  

1) 

0.80 
(30.8, 
0.31) 

0.81 
(13.5,  
0.70) 

0.81 
(0) 

0.81 (0) 

QC5 
(CP, DP, 
WP) 

0.11 
(3.0, 

0.38) 

0.11 
(0.8,  

1) 

0.28 
(5.8, 

0.21) 

0.28 
(1.2,  

1) 

0.07 
(0) 

0.07 
(0) 

Table 4.  Performance of the workflow retrieval system. 

RELATED WORK 
As we mentioned earlier, prior work on workflow matching 
does not address data-centered queries, but rather focuses 
on queries based on components and their orderings or tags 
added by users [6,14].  
Prior research investigated how to enrich user queries by 
inferring the value for additional attributes to support 
matching [9].  However the work was applied to enriching 
queries rather than workflows, and also used simpler 
domain models with minimal dependencies between 
attributes. 
The backward and forward sweeps are essentially a form of 
goal regression [16] and forward projection [2] used in AI 
planning.  There are subtle differences in that initial states 
in planning contain ground literals while workflow 
templates include constraints that are not ground. When we 
consider workflows as composed of steps that change the 
properties of datasets, we find that workflow matching is 
related to plan matching [12,20].  Plans are retrieved 
according to the aspects of the initial state and goals in the 
query.  When the plans are stored, they are augmented with 
the necessary conditions that justify the choices made 
during planning.  In our work we do not annotate choices, 
rather we augment the description of the datasets. Our work 
would be analogous to augmenting the description of a 
planning state, which the abovementioned research does not 
need to do since the states are always assumed to be fully 
described. 

CONCLUSION 
We have presented a novel approach to workflow discovery 
that allows users to query based on data-centered 
properties. The key idea of the approach is to augment 



 

 

workflow descriptions with semantic information to achieve 
higher precision in the matching process.  We described an 
algorithm to enrich workflow templates created by users 
that do not contain many important constraints.  These 
constraints are obtained from component catalogs and 
incorporated and propagated through the workflow.  We 
also described an algorithm for matching workflows that 
calls out to external component and data catalogs to do the 
aspects of the reasoning that concerns individual 
components and datasets. This is essential to support 
scientific applications. 

Workflow repositories have the potential to transform 
computational science.  Today, much effort is invested in 
re-implementing scientific analysis methods described in 
publications.  If workflows were routinely shared by 
scientists, they would be readily reusable and as a result 
that effort will be saved.  This would also facilitate 
reproducibility of scientific results, a cornerstone of the 
scientific method. Effective techniques for matching and 
discovery are key incentives for scientists to share analytic 
methods as reusable computational workflows.  
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