
Workflow Matching Using Semantic Metadata
Yolanda Gil1, Jihie Kim1, Gonzalo Florez2, Varun Ratnakar1, Pedro A. González-Calero2

1 Information Sciences Institute
University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, CA 90292, USA

{gil, jihie, varunr}@isi.edu

2 Facultad de Informática
Universidad Complutense de Madrid

28040 Madrid, Spain
gflorez@fdi.ucm.es, pedro@sip.ucm.es

ABSTRACT
Workflows are becoming an increasingly more common
paradigm to manage scientific analyses. As workflow
repositories start to emerge, workflow retrieval and
discovery becomes a challenge. Studies have shown that
scientists wish to discover workflows given properties of
workflow data inputs, intermediate data products, and data
results. However, workflows typically lack this
information when contributed to a repository. Our work
addresses this issue by augmenting workflow descriptions
with constraints derived from properties about the
workflow components used to process data as well as the
data itself. An important feature of our approach is that it
assumes that component and data properties are obtained
from catalogs that are external to the workflow system,
consistent with current architectures for computational
science.

Categories and Subject Descriptors
I.2.11 Distributed Artificial Intelligence; I.2.8 Problem
Solving, Control Methods, and Search; H.4 Information
Systems Applications; I.2.4 Knowledge Representation
Formalisms and Methods.

General Terms
Algorithms, Languages.

Keywords
scientific workflows, workflow matching, workflow
discovery, workflow retrieval, workflow catalogs, semantic
workflows, semantic matchmaking.

INTRODUCTION
Workflows represent complex applications assembled from
distributed steps implemented as remote services or remote
job submissions [3,19]. Workflows are becoming an
increasingly more common paradigm to manage scientific

analyses. Workflows represent data analysis routines as
workflow components. Workflows also contain links that
express the dataflow among these components and reflect
the interdependencies that must be managed during their
execution.
As scientific workflows become more commonplace,
workflow repositories are emerging with contributions from
a variety of scientists. Provenance systems record the
details of the execution of workflows so they can be
retrieved later [17,13]. Since workflow executions contain
a lot of details that make it harder to reuse them, scientists
also share workflow templates that describe a general kind
of analysis that can be more easily reused [19]. Workflow
repositories can also contain best practices for common
types of scientific analyses [18].
Workflow matching and discovery from these repositories
becomes a challenge. A scientist may need a workflow
appropriate to analyze some dataset he or she has, or need a
workflow that does a certain kind of analysis, or a
workflow fragment that produces a certain type of result. A
series of studies regarding the requirements for scientific
workflow matching and discovery [5-8] found the need to
support:

I. Queries based on the types of data used by a workflow,
II. Queries based on the types of intermediate or final data

that the workflow produces,
III. Queries specifying ordered data points that must appear

in the dataflow,
IV. Queries that specify what components (algorithms)

must appear in the workflow and their relative order,
V. Queries that specify properties of the workflow such as

authors, creation time, derived variants, or popularity,
VI. Queries that contain any combination of the above.

Recent work on workflow discovery has only investigated
retrieval based on component orderings [6], retrieval based
on (social) tags and textual descriptions [7], and retrieval of
workflow execution traces to be reused during workflow
creation [14]. Matching based on types of data has been
done for the discovery of individual services or software
components [10,15], but not for the more complex
structures that workflows represent. Queries I to III above
have not been investigated to date and are the most
challenging, as they represent data-centered properties of
the workflow that are often not specified in the workflow.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
K-CAP’09, September 1-4, 2009, Redondo Beach, California, USA.
Copyright 2009 ACM.

 Proceedings of the Fifth International Conference on Knowledge Capture (K-CAP), Redondo Beach, CA, September 1-4, 2009.

T1: Sample the training data to build an LMT model, randomize and

normalize the test data and use an LMT classifier.

T2: Normalize training and test data, then use ID3 to model and classify
the data.

T3: Use NaiveBayes with sampled discrete weather 155627 for training.

T4: Normalize and sample training data, then use a voting scheme to
combine a NaiveBayes model, an HNB model, and an ID3 model.

Figure 1. Example workflow templates in a workflow catalog, showing the diagram and constraints specified by users.

The main contribution of this work is to support workflow
retrieval given data-centered queries and their combination
with other constraints on components and workflow
structure. One important challenge is that workflow
catalogs typically specify only a limited amount of
information that is insufficient for data-centered queries.
That is, although semantic annotations of workflows have
been explored in prior work, the presence of any semantic
information in the workflow is assumed to be manually
provided. However, when users create a workflow they
rarely add such information. We believe that many
semantic annotations can be extracted from component
catalogs that describe individual components reused in
different workflows. Our approach is to use such
component descriptions to automatically enrich the
workflows created by users into semantic workflows that
contain inferred properties that are needed for supporting
data-centered queries. An important consideration in our
work is that scientific applications are developed using data
and component catalogs that are independent of workflow
catalogs (e.g., www.nvo.org, www.earthsystemgrid.org,
cabig.cancer.gov). Therefore, a contribution of our work is
that our workflow matching algorithms identify reasoning
tasks that are specific to datasets and components, and

submit requests to external data and component catalog
services to carry them out.
The paper begins with examples of the kinds of queries that
our approach can address. After describing our workflow
enrichment and matching algorithms, we present our
implemented system and performance results on a modest
but realistic library of workflows.

MOTIVATING EXAMPLES
We use a small set of queries to illustrate the capabilities of
our approach and implemented system. Here, we use
machine learning workflows with components from the
well-known Weka repository [21] and Irvine datasets [1].
These workflows typically consist of a few data preparation
steps, then build a model with training data that is used to
classify test data.
Figure 1 shows in detail four workflow templates that could
be in a workflow catalog. For each template, we show the
dataflow diagram as the creator would specify it by
selecting components (which correspond to data analysis
routines used, shown in yellow) and connecting them. The
dataflow graph shows stubs for data, which are called
workflow data variables, in dark blue. Parameters of
components are shown in light blue.

Figure 2. Workflow constraints for T4 after the workflow
is augmented with propagated constraints.
When users create workflow templates, they specify
workflow components and dataflow links. Users will rarely
specify any additional constraints of any of the datasets in
the workflow. For example, we expect that a user creating
T1 will not specify that the model generated by a logistic
model tree (LMT) modeler is of type LMTmodel. In the
user’s mind, this would fall from the definition of an LMT
modeler, and does not need to be specified in each
workflow. Therefore, workflows contributed to the catalog
will mostly consist of the dataflow graph and have little or
no semantics about the datasets involved. In our approach,
the original dataflow provided by the workflow creator is
augmented with additional inferred constraints based on
information coming from the component catalog about how
each workflow component behaves. That is, a component
catalog would know that a discretizer component does not
change the sparseness of a dataset, but will make a
continuous dataset into a discrete one. Figure 2 shows
examples of such constraints derived by our system as
tables of triples of <object property value>, which we call
data object descriptions (DODs).
Table 1 shows retrieval results for five diverse example
queries. The first column gives a textual description of the
query. The second column shows which workflows can be
matched if the original workflows are augmented only with
type information obtained from a basic component catalog
that only represents data type constraints for components.
The last column shows the workflows that are retrieved by
our system after augmenting the original created workflow
with additional inferred properties from a component
catalog with richer semantic information about components.

Query Matched
workflows
augmented
with types

Matched
workflows with
propagated
constraints

Q1: Find workflows where input
data is cpu data, which is
continuous and has missing values

T1
T2
T3
T4

-
-
-
-

Q2: Find workflows that generate a
classification of Iris data

T1
T2
T3
T4

T1
T2
-

T4
Q3: Find workflows that can have
cpu-2008-07-09 as input to a
classifier (the dataset is continuous
and has missing values)

T1
T2
T3
T4

-
-
-
-

Q4: Find workflows that use
sampled training data to produce a
Bayes model, then use model to
generate a classification of Iris test
data, which is discrete and has
missing values

-
-

T3
T4

-
-
-

T4

Q5: Find workflows that normalize
labor data to create a decision tree
model (labor data is continuous and
has missing values)

T1
T2
-

T4

-
-
-
-

Table 1. Example queries showing workflows retrieved.

T1 illustrates the difference. It uses the LMT algorithm, a
decision tree approach that requires that the data does not
have missing values (i.e., it is not sparse). When T1 is
augmented with the types that are input and output for each
component, it would include a constraint that the model
created by the LMT modeler is a decision tree model (DT
model). Therefore, it would not be retrieved for query Q4,
which asks for a Bayes model, but it would be retrieved for
Q1, Q2, Q3, and Q5. But the LMT algorithm also requires
that the data has no missing values. Therefore, the input to
the sampler cannot have missing values in turn. When the
system propagates this requirement through the sampler
component, it can detect that T1 is not appropriate for Q1,
Q4, or Q5 because the input datasets would be sparse. In
essence, T1 is only really appropriate to retrieve for Q2. If
no constraints are propagated, the system would also
retrieve T1 for Q1, Q3, and Q5 resulting in lower precision.
An analogous situation occurs with workflow template T2.
It uses the ID3 algorithm, which can only take discrete
values, and normalizes the datasets before modeling and
classifying. When T2 is augmented with the input and
output types for each component, it includes a constraint
that the model created by the ID3 modeler is a decision tree.
Therefore, it would not be retrieved for query Q4, which
asks for a Bayes model, but it would be retrieved for Q1,
Q2, Q3, and Q5. When the system propagates the
constraint that input datasets cannot have continuous
values, it can detect that T2 is not appropriate for Q1, Q3,
or Q5 because the query datasets are continuous.
Augmented workflows lead to higher precision with no loss
in recall. Higher precision is very important for workflow
discovery, since the size of repositories can become very
large. For example, the Taverna bioinformatics workflow
system includes more than 3,000 services as of 2006 [11].

Construct Type Use

<?c1 precedes ?c2> SP component ?c1 appears upstream
in the dataflow from ?c2

<?d1 datapointPrecedes
?d2>

SP data variable ?d1 appears upstream
in the dataflow from data variable
?d2

<?d1
datapointImmediatelyPr
ecedes ?d2>

SP data variable?d1 is input to a
component that outputs data
variable ?d2

<?c hasInputData ?d> SP dataset identifier ?d is an input to
the component ?c

<?c Subclass-of ?t> CP component ?c is a subclass of
component type ?t

<?d hasDataBinding ?i> DP data variable ?d in the workflow is
bound to dataset identifier ?i

<?d canBeBound ?i> DP data variable ?d in the workflow
could potentially be bound to
dataset identifier ?i

<?d hasType ?t> DP Data variable ?d must be of type ?t

<?d ?p ?v> DP dataset ?d has property ?p with
value ?v

<?w hasInputDataset
?d>

WP
(DP)

?d represents an input data variable
to the workflow ?w

<?w hasOutputDataset
?d>

WP
(DP)

?d represents an output data
variable of the workflow ?w

<?w
hasIntermediateDataset
?d>

WP
(DP)

?d is a dataset of workflow ?w that
is not an input or output data
variable

<?w hasDataset ?d> WP
(DP)

?d represents a data variable in
workflow ?w that can be an input,
output, or intermediate data
variable

<?w hasComponent ?c> WP
(CP)

?c represents a component in
workflow ?w

<?w hasInputParameter
?p>

WP
(CP)

?p is a parameter in workflow ?w

Table 2. Overview of query language constructs.

EXPRESSING QUERIES FOR WORKFLOW
DISCOVERY
Queries for workflow discovery may be issued in a variety
of contexts [5,6]:
• A user with a dataset is looking for ways to analyze it
• A user is creating a workflow and is looking for

workflow fragments that have been created by others
for specific functions

• A user has created a workflow and wants to find
similar ones

• A user is browsing a workflow catalog and wants to
search for workflows with general kinds of features

• A system can retrieve workflows to be brought up to
the attention of a user, for example during workflow
creation or when trying to execute workflows

• A system can retrieve a workflows and use it to
generate a desired type of result requested by the user

As we mentioned in the introduction, a series of studies
have documented what kinds of queries users wish to
express for retrieving workflows [5-8], discussed as
categories I-VI above. Users often describe the desired
workflow in terms of the output produced and input used,
or may indicate some properties of intermediate data. We
refer to all these as data-centered properties (DP). Q1 is an
example where input data properties are specified, Q2 is an
example for output and Q4 for intermediate data.
Another finding of those studies is that users also want to
be able to specify the kinds of algorithms (components) or
component types that are used in the workflow. We call
these component-centered properties (CP). Q3 and Q5 are
examples of queries with such properties, though note that
they also include data-centered properties.
Other queries would specify constraints on the structure of
the workflow, concerning the relative ordering of the data
processing steps. Users wanted to specify a partial or total
order for the steps. In addition, users wanted to specify the
types of data generated and in what order. We refer to both
of these as structural properties (SP). Examples are Q4
and Q5, where three types of data to be generated are
mentioned and their relative order is specified.
Our work focuses on supporting user queries that specify
data-centered properties (DP) and their combination with
component-centered (CP) and structural properties (SP).
These comprise all but category V discussed earlier.
Table 2 shows the constructs in our query language to
represent user requirements for DP, CP, and SP. The
language includes constructs to refer to workflow properties
(WP), which indicate the role of datasets and components in
the workflow. These are the last six constructs shown in
the table. The table specifies each construct’s type and its
use. Each construct is expressed as a triple <object
property value>. Disjunction and negation are not allowed.
The semantics of most constructs are straightforward, but
there is an important aspect to discuss. We make a
particular choice of those proposed by [15] over others that
have been proposed for semantic service discovery. In that
approach, a matcher should support retrieval with the
opposite subclass relations as well intersection of the
classes. However, based on our experience we make the
following choices. First, for <?c Subclass-of ?t> we
assume that the semantics the user intends is that only
workflows which contain a component of class ?t or a more
specific class should be retrieved. For example, for <?c
Subclass-of DecisionTreeclassifier> it is ok to retrieve
workflows with ID3classifier and with LMTclassifier, but
not workflows that have more general classes such as
TreeClassifier. The rationale for this is that if a user found a
more general component class acceptable they would not
have indicated such a specific class. Second, when the user
specifies data properties we assume that the semantics
intended is that any workflows appropriate for more general
classes should be retrieved. For example, for <?d hasType
BayesModel> and <?d hasDomain weather> it is ok to
retrieve workflows that generate datasets of type Model and

Figure 3. Snapshots of the user interface to specify queries
Q1, Q2, Q4, and Q5, showing the formal query expression
formulated by the system in the pop-up window.

do not specify the domain. The rationale here is that the
user is looking for a workflow that can be used to analyze
or to generate data of a specific type, and any workflows
that process or generate data of a more general type are
appropriate. Therefore, note that the semantics are very
different for component classes and for dataset classes.
Figure 3 shows snapshots of the user interface when
specifying the example queries, with a pop-up window
showing the formal representation of the query. Users
would have used a similar interface to create and view
workflow templates (such as those shown in Figures 1 and
2). So, like a workflow, a query consists of a dataflow
diagram and a table of constraints (triples). Much as they
do in the workflow editor, users can create a query by
selecting elements and drawing links among them, and by
defining constraints on the query data variables. When
defining constraints, the system offers a pull down menu of
possible properties of data variables. When a property is
selected, the system shows possible types and values.
The query editor has a few additional elements in the
dataflow diagram pane that do not exist in the workflow
template editor. To express that a dataset is a workflow
input or output dataset (as in Q1 and Q2), the user can draw
a node and label it as “workflow”. To express one or more
components to process a dataset (as in Q4 and Q5), the user
can draw a node and label it as “component-n.” This type
of node is also used to express a query as a series of data
points (as in Q4).
Note that our system formulates the formal query (shown in
the popup windows of Figure 3) based on what the user
specifies in the query interface.

APPROACH TO WORKFLOW MATCHING
Our approach has three novel contributions, described in
this section:

1. An algorithm for enriching workflow catalogs that
incorporates in each template relevant properties of
data and components and then propagates these
properties throughout the workflow

2. An algorithm for workflow matching based on data-
centered properties and their combination
component-centered and structural properties

3. A separation of reasoning steps that can be called out
to external component and data catalogs, concerning
individual components and datasets

Data and Component Catalog Requirements
In order to support the reasoning mechanisms for workflow
retrieval, we require that the data catalog and the
component catalog support the following functions:

• subsume: DOD(d1) × DOD(d2) → Boolean
Determine whether data object d1 is compatible with data
object d2 by checking if a set of metadata annotations on
d1 subsume those on d2.

• combineDODs: DOD(d) × DOD(d) → DOD(d)
Combine two sets of metadata annotations on the same
data object d.

• findDataRequirements: DOD(c) → DOD(c)
Return a possibly larger set of constraints on the
arguments of component c given an initial set of
constraints on those arguments.

• subsume: c1 × c2 → Boolean
Whether a component class subsumes another.

Note that the findDataRequirements function in the
component catalog can be supported in two alternative
ways. One is simpler and only returns input and output
types. In that case, our matcher only matches based on
types. The second way is to return any constraints inferred
in addition to types. Those constraints can be propagated
through the workflow and used for matching. As we
illustrated with our query examples, matching based on
propagated constraints achieves higher precision than
matching simply based on types.

Enriching Workflow Catalogs: Propagating
Semantic Properties of Workflow Templates
We enrich workflows by propagating through the workflow
structure constraints about the components and about
particular datasets as obtained from the data and component
catalog. The propagation of constraints is done in two
phases: first, from workflow outputs to workflow inputs
(backward sweep); and then, from workflow inputs to
outputs (forward sweep). These two phases are applied
iteratively until no changes occur. Table 3 shows the
pseudo-code for the backward sweep. The forward sweep
uses a similar algorithm.

Workflow Retrieval
Given a query, for every workflow template in the library
we generate possible mappings between variables in the
query and variables in the template. If a mapping is found
the template is added to an initial set of candidate matches
together with the possible variable mappings. From that
set, we filter out those that violate any of the query
constraints. This section describes this algorithm in detail.
A query q can be represented as a tuple <DVq, CVq, DPq,
CPq, SPq, WPq> containing a set DVq of data variables, a
set CVq of component variables, a set DPq of data-centered
properties, a set CPq of component-centered properties, a
set SPq of structural properties, and a set WPq of workflow
properties. A workflow template wt can be represented as a
tuple <DVwt, Cwt, DOD(DVwt), L> containing a set DVwt
of data variables, a set Cwt of components, a set
DOD(DVwt) of data object descriptions on the data
variables of the workflow, and a set L of links that express
the dataflow among components and which data variables
correspond to that dataflow link.

We define a mapping map between a query q and a
template wt as a function that associates each data variable
in q to a data variable in wt and each component variable in
q to a component in wt:

∀ dv ∈ DVq ∃ map(dv) ∈ DVwt
∀ cv ∈ CVq ∃ map(cv) ∈ Cwt

BackwardSweep(wt)
1. backward-processed-DVs ← output-DVs(wt)
2. remaining-components ← Cwt
3. while not empty(remaining-components)
4. c ← selectBackwardProcessable(remaining-components)
5. DOD(c) ← { }
6. remaining-components ← remaining-components - {c}
7. forEvery arg ∈ output(c)
8. let dv ≡ destination(c, arg)
9. DOD(c) ←
 combineDODs(DOD(c), DOD(dv)(dv | arg))
10. DOD(c) ← findDataRequirements(DOD(c))
11. forEvery arg ∈ input(c)
12. let dv ≡ origin(c, arg)
13. DOD(dv) ←
 combineDODs(DOD(dv), DODarg(c)(arg | dv))
14. if destination(dv) ∩ remaining-components = ∅ then
15. backward-processed-DVs ←
 backward-processed-DVs ∪ {dv}
 where:
– wt is a workflow template
– output-DVs(wt) returns the set of output data variables in wt
– Cwt represents the set of components in wt
– selectBackwardProcessable returns a component in the

workflow all whose output arguments are linked to data
variables in backward-processed-DVs

– input(c) (output(c)) represents input (output) arguments of c
– destination(c, arg) represents the data variable where the

result of output argument arg of component c is stored
– origin(c, arg) represents the data variable that stores the input

for the argument arg of component c
– DODarg(c) represents the subset of constraints on arguments of

component c that only refers to argument arg
– (id1 | id2) represents the replacement of identifier id1 with

identifier id2 in a set of constraints
Table 3. Algorithm to augment workflow templates by
propagating constraints from data products to data inputs.

Given a query q and a workflow template wt we first
generate all possible mappings from variables in the query
to data variables and components in the workflow that
fulfill the set WPq. The candidate mappings are filtered in
three consecutive steps using the rest of the query:

1. Filter out candidate mappings that violate CPq.
2. Filter out candidate mappings that violate SPq.
3. Filter out candidate mappings that violate data

properties DPq. That is, for every data variable in the
query, dv ∈ DVq, the data catalog subsume(
DOD(m(dv)), DPq(dv)) must return true where
DOD(m(dv)) represents the subset of constraints in
DOD(DVwt) that only refers to m(dv), and DPq(dv)
represents the subset of constraints in DPq that only
refers to dv.

There is a tradeoff between precision and performance that
is worth mentioning here. The constraint propagation
algorithm can be run on each workflow template as it is
being added to the library and prior to resolving any
queries. Alternatively, it can be run at query matching time
and incorporating all the constraints specified in the query
into each workflow being matched. To achieve this, we

would simply propagate the constraints in the query through
the workflow structure using the same backward and
forward sweep algorithms. The first option makes the
performance of the matcher much faster that running the
constraint propagation algorithms, but the precision is
higher with the second option as all the constraints that
appear in the query are taken into account.

PERFORMANCE RESULTS
Our query interface and matcher are implemented as part of
the WINGS workflow system [4,13]. We represent
workflows and their constraints in OWL, and use Jena as
the underlying reasoner. The data and component catalogs
are implemented as separate services that support the
functions described in the prior section.
We tested two different matchers. One matcher (m-types)
uses only data types, that is the component catalog returns
only input and output type information. The other matcher
(m-constr) propagates not only data types but also all other
constraints on datasets.
We looked at queries in five categories. Category QC1
corresponds to queries that have constraints on input data.
QC2 are queries with constraints on output data. QC3 are
queries with constraints on components. QC4 are queries
that have constraints on intermediate data. QC5 are queries
that include constraints both on components and on data.
Each of the queries Q1-Q5 in Table 1 belongs to one of the
QC1-QC5 categories. We created four additional queries
for each category.
We used three different workflow catalogs. CAT1
contained 20 workflows, CAT2 contained 100 workflows
that could be in principle relevant, and CAT3 included 100
workflows that would not be relevant. We created relevant
workflows with several variations of steps and data
constraints. We created irrelevant workflows by adding a
constraint that made the domain different from the domain
used in all the queries.
Table 4 shows the performance for the two matchers and
the three workflow libraries across different categories of
queries. We show the query response time in seconds,
using an Intel Core 2 Duo 2.6GHz with 2GB. We also
show the number of workflows matched and the precision.
The m-constr matcher that uses propagated constraints
shows in these experiments:
• Higher precision: m-constr always returns less matches

than m-types, even when the query does not have DP
constraints.

• Same recall: Both matchers return all the correct answers.
• Comparable performance: m-constr is rarely slightly

slower and often slightly faster, than m-types, since it
ends up ruling out candidate matches earlier in the
matching process. QC4 queries take longer since there
are many possible mappings of data variables that need to
be considered.

• Comparable scalability: Performance against larger
catalogs is not necessarily slower, as it depends on how
early the matching process terminates for each template.

CAT1: 20 workflows
in library

CAT2: 100
workflows in
library that could be
relevant

CAT3: 100
workflows in library
that would not be
relevant

Q.
category
(features
used)

m-
types:
Avg
Retr.
Time
(Avg #
retrv’d,
prec’n)

m-
constr:
Avg
Retr.
Time
(Avg #
retrv’d,
prec’n)

m-
types:
Avg
Retr.
Time
(Avg #
retrv’d
,
prec’n)

m-
constr:
Avg
Retr.
Time
 (Avg #
retrv’d,
prec’n)

m-
types:
Avg
Retr.
Time
(Avg #
retrv’d)

m-
constr:
Avg
Retr.
Time
(Avg #
retrv’d)

QC1
(DP,
WP)

0.16
(15.8,
0.67)

0.16
(10.6,

 1)

0.40
(39.0,
0.68)

0.41
(26.6,

1)

0.41
(0)

0.40
(0)

QC2
(DP,
WP)

0.10
(15.0,
0.93)

0.10
(14.0,

 1)

0.25
(35.8,
0.96)

0.25
(34.4,

1)

2.60
(0)

0.25
(0)

QC3
(CP,
WP)

0.07
(9.0,

0.84)

0.06
(7.6,

1)

0.16
(22.0,
0.85)

0.17
(18.6,

1)

0.15
(0)

0.01
(0)

QC4
(DP)

0.30
(11.0,
0.38)

0.29
(4.2,

1)

0.80
(30.8,
0.31)

0.81
(13.5,
0.70)

0.81
(0)

0.81 (0)

QC5
(CP, DP,
WP)

0.11
(3.0,

0.38)

0.11
(0.8,

1)

0.28
(5.8,

0.21)

0.28
(1.2,

1)

0.07
(0)

0.07
(0)

Table 4. Performance of the workflow retrieval system.

RELATED WORK
As we mentioned earlier, prior work on workflow matching
does not address data-centered queries, but rather focuses
on queries based on components and their orderings or tags
added by users [6,14].
Prior research investigated how to enrich user queries by
inferring the value for additional attributes to support
matching [9]. However the work was applied to enriching
queries rather than workflows, and also used simpler
domain models with minimal dependencies between
attributes.
The backward and forward sweeps are essentially a form of
goal regression [16] and forward projection [2] used in AI
planning. There are subtle differences in that initial states
in planning contain ground literals while workflow
templates include constraints that are not ground. When we
consider workflows as composed of steps that change the
properties of datasets, we find that workflow matching is
related to plan matching [12,20]. Plans are retrieved
according to the aspects of the initial state and goals in the
query. When the plans are stored, they are augmented with
the necessary conditions that justify the choices made
during planning. In our work we do not annotate choices,
rather we augment the description of the datasets. Our work
would be analogous to augmenting the description of a
planning state, which the abovementioned research does not
need to do since the states are always assumed to be fully
described.

CONCLUSION
We have presented a novel approach to workflow discovery
that allows users to query based on data-centered
properties. The key idea of the approach is to augment

workflow descriptions with semantic information to achieve
higher precision in the matching process. We described an
algorithm to enrich workflow templates created by users
that do not contain many important constraints. These
constraints are obtained from component catalogs and
incorporated and propagated through the workflow. We
also described an algorithm for matching workflows that
calls out to external component and data catalogs to do the
aspects of the reasoning that concerns individual
components and datasets. This is essential to support
scientific applications.

Workflow repositories have the potential to transform
computational science. Today, much effort is invested in
re-implementing scientific analysis methods described in
publications. If workflows were routinely shared by
scientists, they would be readily reusable and as a result
that effort will be saved. This would also facilitate
reproducibility of scientific results, a cornerstone of the
scientific method. Effective techniques for matching and
discovery are key incentives for scientists to share analytic
methods as reusable computational workflows.

ACKNOWLEDGMENTS
This research was funded in part by the National Science
Foundation under grant number CCF-0725332.

REFERENCES
[1] Asuncion, A. & Newman, D.J. UCI Machine Learning

Repository Irvine, CA: University of California,
School of Information and Computer Science, 2007.
Available from
www.ics.uci.edu/~mlearn/MLRepository.html.

[2] Fikes, R. E., and Nilsson, N. J. “STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving”, Artificial Intelligence, 2(3), 1971.

[3] Gil, Y., Deelman, E., Ellisman, M., Fahringer, T.,
Fox, G., Gannon, D., Goble, C., Livny, M., Moreau,
L. and J. Myers. “Examining the Challenges of
Scientific Workflows.” IEEE Computer, vol. 40, no.
12, 2007.

[4] Gil, Y., Ratnakar, V., Deelman, E., Mehta, G. and J.
Kim. “Wings for Pegasus: Creating Large-Scale
Scientific Applications Using Semantic
Representations of Computational Workflows,”
Proceedings of the 19th Annual Conference on
Innovative Applications of Artificial Intelligence
(IAAI), Vancouver, British Columbia, Canada, 2007.

[5] Goderis, A., Sattler, U., Lord P. and C. Goble. “Seven
bottlenecks to workflow reuse and repurposing.” Proc.
of the 4th Int. Semantic Web Conference, Galway,
Ireland, November 2005.

[6] Goderis, A., Li, P. and C. Goble. “Workflow
discovery: the problem, a case study from e-science
and a graph-based solution.” International Journal of
Web Services Research, Vol 5, No 4, 2008.

[7] Goderis, A., De Roure, D., Goble, C., Bhagat, J.,
Cruickshank, D., Fisher, P., Michaelides, D., and
Tanoh, F. “Discovering Scientific Workflows: The
myExperiment Benchmarks.” Internal project report,
submitted for publication. 2008.

[8] Goderis, A., Fisher, P., Gibson, A., Tanoh, F.,
Wolstencroft, K., De Roure, D. and C. Goble.
“Benchmarking Workflow Discovery: A Case Study
From Bioinformatics.” To appear in Concurrency and
Computation: Practice and Experience.

[9] Gupta, K.M., Aha, D.W., and Sandhu, N. “Exploiting
Taxonomic and Causal Relations in Conversational
Case Retrieval.” Proceedings of the European
Conference on Case-Based Reasoning (ECCBR),
2002.

[10] Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler,
U. and R. Stevens. “Deciding semantic matching of
stateless services.” Proceedings of the Annual
Conference of the American Association for Artificial
Intelligence (AAAI), 2006.

[11] Hull, D., Wolstencroft, K., Stevens, R., Goble, C.,
Pocock, M., Li, P., and T. Oinn. “Taverna: A Tool for
Building and Running Workflows of Services”,
Nucleic Acids Research, Vol 34, 2006.

[12] Kambhampati, S. and J. A. Hendler. “A Validation
Structure-Based Theory of Plan Modification and
Reuse”, Artificial Intelligence Journal. Vol 55, 1992.

[13] Kim, J., Deelman, E., Gil, Y., Mehta, G. and V.
Ratnakar. “Provenance Trails in the Wings/Pegasus
Workflow System,” Concurrency and Computation:
Practice and Experience, Special Issue on the First
Provenance Challenge, Vol 20, Issue 5, April 2008.

[14] Leake, D. and J. Kendall-Morwick. “Towards Case-
Based Support for e-Science Workflow Generation by
Mining Provenance.” Proceedings of the European
Conference on Case-Based Reasoning, 2008.

[15] Li, L. and I. Horrocks. “A software framework for
matchmaking based on semantic web technology.”
Proceedings of the Twelfth International World Wide
Web Conference (WWW), 2003.

[16] McDermott, D. “Regression Planning”. International
Journal of Intelligent Systems, Vol. 6, Issue 4, 1991.

[17] Moreau, L. and B. Ludaescher (Eds). Special Issue on
the First Provenance Challenge. Concurrency and
Computation: Practice and Experience. 20(5), 2008.

[18] Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo,
P., and J. P. Mesirov. “GenePattern 2.0.” Nature
Genetics Vol 38 No. 5, 2006.

[19] Taylor, I., Deelman, E., Gannon, D., Shields, M.,
(Eds). “Workflows for e-Science”, Springer, 2007.

[20] Veloso, M. M., “Planning and Learning by Analogical
Reasoning.” Springer Verlag, December 1994.

[21] Witten, I. H. and Frank E. “Data Mining: Practical
Machine Learning Tools and Techniques.” Morgan
Kaufmann, San Francisco, 2nd edition, 2005.

